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a = location of the positive pole of  the bipolar
coordinate system on the x-axis, equal  
ri Sinh ηi  or ro Sinh ηo

a* = local heat transfer coefficient, 
q′′ / (Tw – To)

–a = average heat transfer coefficient over
annulus height, ∫10 a*dZ/l

A = cross-sectional area of the channel, 
π(r 2

o – r 2
i )

cp = specific heat of fluid at constant pressure

Dh = equivalent (hydraulic) diameter of annulus,
2 ( ro – ri ) = 2 a (1 – N) Csch ηo

e = eccentricity (distance between the two
centers of the two cylinders forming the
eccentric annulus), a (Coth ηo – Coth ηi )

E = dimensionless eccentricity (dimensionless
center-to-center distance), e / (ro – ri )

f = volumetric flow rate,  f = 
ro

ri∫2πrudr = 
π(r2

o – r 2
i ) –u = 2 

π

0
∫η i

η o∫uh2dηdξ
F = dimensionless  volumetric flow rate,  f /

πlγGr* = 8(l – N )2 
π

0∫
η i

η o ∫U H2 dηdξ/π
g = gravitational body force per unit

mass(acceleration)
Gr = Grashof number,  ±gβq′′D4

h/2γ2k, the plus
and minus signs apply to upward (heating)
and downward (cooling) flows, respectively.
Thus Gr is always positive

Gr*= modified Grashof number, Gr* = Gr Dh/ l
h = coordinate transformation scale factor, 

a (Cosh η – Cos ξ )

H = dimensionless coordinate transformation
factor,

i = index of the numerical grid in η-direction
j = index of the numerical grid in ξ-direction
k = thermal conductivity of fluid
l = height of annulus
L = dimensionless height of annulus ( value of Z

at annulus exit ), 1/ Gr*
m = number of  steps of the numerical grid in  ξ-

direction
n = number of  steps of the numerical grid in the

η-direction or infinite – series summation
parameter in analytical solution

n* = direction normal to either boundary and the
direction of positive q′′

N = annulus radius ratio, ri/ro = Sinh ηo/Sinh ηi
p = pressure of fluid inside the channel at any

cross-section 
p′ = pressure defect at any point, p – ps
po = pressure of fluid at annulus entrance
ps = hydrostatic pressure, +– ρogz where the

minus and plus signs are for upward
(heating) and downward (cooling) flows
respectively

P = dimensionless pressure defect at any point,
p′ D 4

h /ρol
2γ2Gr*2

Pr = Prandtl number, µ cp/k
q′′ = local heat flux at either boundary which is

defined to be positive  when it heats the
fluid, – k∂T/∂n• = ± (k/h) (∂T/∂η) where the
upper and lower signs stand for the inner
and outer walls respectively, in case  of fluid
heating and vice versa in case of  fluid
cooling
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Introduction
Having many practical applications, laminar free or forced convection with
simultaneously developing hydrodynamic and thermal boundary layers in
vertical annuli has received a great deal of attention. Such type of heat transfer
may exist in vertical electric motors and generators and in atomic reactors.
Most of the work available in the literature deals with concentric annuli.
However, in many practical situations eccentricities might be introduced in
nominally concentric annuli as a result of manufacturing tolerances or
operating conditions.

Fully developed forced flow and convection heat transfer in eccentric annuli
have been tackled by some investigators. Heyda[1] determined the Green’s
function in bipolar coordinates for the potential flow in an eccentric annulus
and then solved the momentum equation for the velocity profile. Snyder[2]
utilized the analytical solution obtained by El-Saden[3] for the conduction heat
transfer problem to solve the differential equation describing the slug flow heat
transfer in an eccentric annulus. Using the same technique, Snyder and

q = heat gained or lost by fluid from the
entrance up to a particular elevation in the
annulus,  ρo f cp (Tm – To)

–q = heat gained or lost by fluid from the
entrance up to the annulus exit, i.e., value of
qat z = l, ρofcp (

–
Tm – To)

Q = dimensionless heat absorbed from the
entrance up to any particular elevation,
q/[πρocplγGr* (Tw – To)] = Fθm–

Q = dimensionless heat absorbed up to the
annulus exit, i.e. value of Q at z = l,
–q/[πρocplγGr*(Tw – To)] = F –θm

ri = inner radius  of annulus
ro = outer radius  of annulus
Ra = Rayleigh number, Gr Pr
Ra*= modified Rayleigh number, 

Gr* Pr = Ra Dh/l
T = temperature at any point
Tm = mixing-cup (mixed-mean or fluid-bulk )

temperature over any cross-section at a
given z, ∫

A
TudA/(A–u ) = 2∫

π

0 ∫
η i

η oTuh2dηdξ/ [π(r2
0

– r2
i ) –u]

–
Tm = mixing cup temperature at annulus exit, i.e.

value of Tm at z = l
Tw = temperature of isothermal wall
u = axial (streamwise) velocity component at

any point
uo = entrance axial velocity, –u
–u = average u (volume flow rate per unit area),

∫udA / A =

2∫π
0∫

η i
η ouh2dηdξ/[πr 2

o – r 2
i ) –u ] =

2∫π
0 ∫

η i

η ouh2dηdξ/[πa2(1 – N 2) Csch2ηo
–u]

U = dimensionless axial velocity at any point ,  

–
U = dimensionless average axial velocity at any

point, 

x = the first transverse direction in the Cartesian
coordinate system

y = the second transverse direction in the
Cartesian coordinate system

z = axial coordinate in both the Cartesian and
bipolar coordinate systems

Z = dimensionless axial coordinate, z / l Gr* 

Greek letters:
β = volumetric coefficient of thermal expansion
η = the first transverse bipolar coordinate
ηi = value of η on the inner surface of the

annulus,  given by equation (1) 
ηo = value of η on the outer surface of the

annulus,  given by equation (2) 
∆η = numerical grid mesh size in η-direction, 

(ηi – ηo ) / n
θ = dimensionless temperature, 
θm = dimensionless mixed-mean temperature, 
–θm = dimensionless mixed-mean temperature at

channel exit, 
µ = dynamic viscosity of fluid
ξ = the second  transverse bipolar coordinate
∆ξ = numerical grid mesh size in ξ-direction, 

π/m
ρo = fluid density at ambient temperature
φ = normalized value of η, (η – ηo)/(ηi – ηo )
ψ = normalized value of ξ, ξ/π
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Goldstein[4] obtained the fully developed velocity profile for laminar forced
flow in eccentric annuli. However, Redberger and Charles[5] solved the same
problem numerically by means of finite-difference techniques and bipolar
coordinates. Using cylindrical coordinates, Cheng and Hwang[6] and
Trombetta[7] obtained approximate solutions for the energy equation under
different boundary conditions in the case of fully developed laminar forced flow
in eccentric annuli.

A very thorough literature survey has revealed that only two papers, by
Feldman et al.[8,9], are available for the investigation of developing forced
convection in eccentric annuli. In these two papers, the two transverse
momentum equations were dropped. Consequently, the hydrodynamic model
comprised only two equations, namely, a reduced axial momentum equation
and the continuity equation. However, since there are three unknown
components of the velocity in addition to the pressure, this two-equation model
required additional assumptions regarding the transverse flows to facilitate a
solution.

No work has been found in the literature dealing with free convection in
open-ended vertical eccentric annuli. However, the developing laminar free
convection in open-ended vertical concentric annuli has been studied by El-
Shaarawi and Sarhan[10] and Al-Arabi et al.[11]. El-Shaarawi and Al-Nimr[12]
presented analytical solutions for the fully developed free convection in open-
ended concentric annuli. Four pairs of fundamental boundary conditions, as
defined by Reynolds et al .[13], were investigated. These fundamental
boundary conditions are obtained by combining each of the two conventional
boundary conditions of having one boundary at constant heat flux or at
constant temperature with each of the conditions wherein the opposite
boundary is kept either isothermal at the inlet fluid temperature or adiabatic.
Fully developed free convection in open-ended vertical annuli is the limiting
case for the more general problem of developing free convection in such
channels. In the latter case fully developed conditions can be achieved if the
annulus is sufficiently high or, more general, if the Rayleigh number has a
sufficiently low value.

The first objective of the present paper is to present a boundary-layer model
for the problem of natural convection heat transfer in vertical eccentric annuli.
The second objective is to develop a numerical algorithm to solve the obtained
model. Finally, numerical results are presented for the velocity profiles, axial
variation of pressure, heights required to suck specified flow rates, and heat
transfer parameters under the thermal boundary conditions obtained by having
one of the annulus boundaries at a constant heat flux while the other boundary
is maintained at the ambient temperature To.

Governing equations and method of solution
A two-dimensional cross-section plan and elevation of the geometry under
consideration are shown in Figure 1(a). This eccentric geometry can easily be
described by the bipolar coordinate system (η, ξ and z) shown in Figure 1(b).
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The transformation equations from the Cartesian coordinate system (x, y and z)
to this bipolar system are given in the nomenclature. In this orthogonal
coordinate system the two cylindrical boundaries of the annulus coincide with
two surfaces having constant values of η (ηi and ηo, which can be expressed in
terms of the annulus radius ratio N and the dimensionless eccentricity E as
given in the nomenclature). The other coordinate (ξ) represents a set of eccentric
cylinders whose centres lie on the y-axis and which orthogonally intersect the
boundaries of the annulus. The transformed geometry in the complex η – ξ
plane is, for a given value of z, a slab of length (ηi – ηo) and width equal to the
limits of ξ, that is 2π. 

The vertical eccentric annulus of finite length shown in Figure 1(a) is open
at both ends and is immersed in a stagnant Newtonian fluid of infinite extent
maintained at constant temperature To. Free convection flow is induced inside
this annular channel as a result of heating or cooling one of its vertical walls
at a uniform heat flux while keeping the other wall at the ambient
temperature To. Thus, two cases are under investigation, namely, case (I) in
which the heat transfer boundary is the inner wall and case (O) in which the

Figure 1(a).
Two-dimensional
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the geometry under

consideration
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heat transfer boundary is the outer wall of the annulus. The fluid enters the
channel at the ambient temperature To and is assumed to have constant
physical properties but obeys the Boussinesq approximation according 
to which its density is allowed to vary with temperature in only the
gravitational body force term of the vertical (axial) momentum equation.
Thus Boussinesq approximation neglects the compressibility effect
everywhere except for the buoyancy force term. Body forces in other than the
vertical direction, viscous dissipation, internal heat generation, and radiation
heat transfer are absent (Figure 1(b)).

The governing equations in a general orthogonal curvilinear coordinate
system are given in two references (Hughes and Gaylord[14] and Moon and
Spencer[15]). Using the appropriate coordinate scale factors[14]), the governing
equations in bipolar coordinates under the above mentioned assumptions are as
follows:

Continuity equation

(1)

ξ – Momentum equation 

(2)

Figure 1(b).
Bipolar coordinate
system

ξ = const.

η = const.

η = ηi
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=
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η – Momentum equation 

(3)

z – Momentum equation 

(4)

Energy equation 

(5)

The differential continuity equation (1) subject to the no slip conditions on the
two boundaries can be written in the following integral form:

(6)

Some parabolic-flow assumptions[16] will be used to simplify the above model.
These assumptions include: the pressure is a function of the axial coordinate
only (∂p/∂η = ∂p/∂ξ = 0), the axial diffusions of momentum and energy are
neglected (∂2/∂z2 = 0), and the η- velocity component (v) is much smaller than
the ξ- and z-velocity components (w and u). Introducing the dimensionless
parameters given in the nomenclature and taking into consideration that the
latter assumption results in dropping the η-momentum equation, equations (1)
through (6) can be replaced by the following five dimensionless equations:

(7)

(8)

(9)

(10)

(11)
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Equations (7) through (10) are subject to the following boundary conditions:

(12)

Equations (7) through (11) were written in linearized finite-difference forms and
then numerically solved[17]. Owing to symmetry, the above equations need to
be solved in only half of the slab , i.e. for 0 ≤ ξ ≤ π. 

In practice, for confined free convection flows the dimensions of the channel
(l and D) and both the wall conditions and ambient temperature are normally
known (i.e. L is given) while the volumetric flow rate f (and hence F) is unknown.
However, the present model and method of solution are handling the problem in
a reversed manner, i.e. obtaining an unknown dimensionless channel height (L)
for a given dimensionless volumetric flow rate (F). Therefore, the condition P =
0 at Z = L is not explicitly imposed on the solution, but continually checked for
satisfaction; recall that the governing equations (8-10) are parabolic in Z and
need only one condition with respect to Z.

All results to be presented in this paper have been obtained using a grid of 20
segments in the η-direction and 20 segments in the ξ-direction. Thus, for each
axial step, 400 (19 × 21 + 1 = 399 + 1) equations have to be solved to obtain the
values of U and P then 399 equations have to be solved for W and 420 equations
for θ, according to the thermal boundary conditions considered. This required
about 35 CPU seconds per one axial step on a main frame computer of WF 77
sys D type. Moreover, the results to be presented here have been obtained by
using very small axial steps near the entrance (∆Z = 10–10 for all the cases
considered) then the axial step was increased several times as the flow moves
downstream to reach a value no more than ∆Z = 10–3.

The mesh size (20 × 20) has been chosen after some numerical
experimentation. In these preliminary numerical experiments, different mesh
sizes (10 × 10, 15 × 15, 20 × 20 and 25 × 25) have been tested. The impact of the
mesh size on the channel height required for case (I) to suck a flow with Uo =
0.001 in a channel of E = 0.7 has been analysed. The results of this analysis
proved that the refinement of the grid from 20 × 20 to 25 × 25 has an effect of
about 2 per cent only on the channel height. Other numerical tests with mesh
sizes of 30 × 30 indicated that the corresponding computer CPU time would be
considerably increased and such tests were not finalised owing to some
limitations.
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Results and discussion
Owing to the neglect of the axial diffusion (∂2/∂Z2 = 0) and variations of
pressure with the two transverse directions (∂P/∂η = ∂P/∂ξ = 0), the Grashof
number is inherent in the dimensionless formulation of the problem and thus it
is not explicitly needed for the solution. However, four other similarity
parameters are explicitly required to solve the problem under consideration.
These are the annulus radius ratio (N), the dimensionless eccentricity (E), the
dimensionless flow rate F (or effectively Uo = F / (1 – N2) ) and the Prandtl
number (Pr). However, one should recall that the inlet velocity (Uo) and hence
the inlet pressure (Po) and the volumetric flow rate (F) are not predetermined
initial conditions independent of the channel height as in the case of forced
flows. Rather, each of them is dependent on the channel height and the applied
heat flux on the heat transfer wall. Moreover, since one of the annulus’ two
boundaries is maintained isothermal, there is, as was explained by El-Shaarawi
and Al-Nimr[12], an upper limiting value for Uo for each value of N and E
(Uo,fd). These upper limiting values can be obtained by analytically solving the
fully- developed energy equation for θfd then these solutions for θfd are
substituted in a finite-difference form of the fully-developed momentum
equation to numerically obtain the fully-developed velocity profiles Ufd. For
given N and E, the average value of the corresponding Ufd -profile gives the
required upper limiting value (Uo, fd) and its corresponding value of the
volumetric flow rate (Ffd = Uo, fd/(1– N 2)). For a wide range of E =0.1-0.9, these
upper limiting values can be found in Mokheimer[17]. 

Computations were carried out for a fluid of Pr = 0.7 in an annulus of N = 0.5.
The radius ratio 0.5 was chosen since it represents a typical annular geometry
with its value of N far enough from unity (N = 1) which represents the case of a
parallel plate channel. Moreover, the free convection results in concentric annuli
of El-Shaarawi and Sarhan[10] are for this particular radius ratio (N = 0.5).
These results provided a means of verification of the present algorithm and the
computer code through special runs at a very small eccentricity (E = 10–6 )
under thermal boundary conditions of one wall being isothermal while the
opposite is adiabatic. This very low value of E = 10–6 was used rather than E =
0.0 since the latter can not be used for computations in bipolar coordinates as it
represents a singularity for transformation from the Cartesian to bipolar
coordinates.

Owing to space limitations, only a representative sample of the results will be
presented. Figure 2(a) shows examples of the developing axial velocity profiles in
the widest and narrowest sides of the gap of an annulus of N = E = 0.5 under
thermal boundary condition (I) for a uniform inlet velocity Uo = 4.35 × 10–3. This
inlet velocity corresponds to a flow rate F = 3.2625 × 10–3 which is very near to
the fully developed flow rate[17] (Ffd = 3.301 × 10–3). Similar results for case (O)
are given in Figure 2(b) corresponding to an inlet velocity of 17.1 × 10–3 (which is
corresponding to a flow rate of 0.012825 and is very near to the fully developed
flow rate Ffd = 0.012867). It can be seen from these two Figures that, very near to
the entrance (e.g. profiles 1,2 and 3), the fluid decelerates near the two walls of the
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annulus owing to the formation of the two boundary layers on the walls and
accelerates in the core region as a result of the continuity principle. However,
further downstream, since the eccentricity increases/decreases the resistance to
flow on the narrowest/widest gap side of the annulus, the axial velocity profile
develops with increasing/decreasing values on the widest/narrowest gap side of

Figure 2(a).
Development of the
axial velocity profiles, N
= E = 0.5, case (I), Uo ×
103 = 4.35. The numbers
on the profiles indicate
the following values of
Z × 107: (1) 10–3, (2) 21.8,
(3)212, (4)712, (5)1,212,
(6) 3,112, (7) 13,112 (and
above, until full
development)
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Figure 2(b).
Development of the
axial velocity profiles, N
= E = 0.5, case (O), Uo ×
103 = 17.1. The numbers
on the profiles indicate
the following values of
Z × 107: (1) 10–3, (2) 21.8,
(3)212, (4)712, (5)1,212,
(6) 3,112, (7) 13,112 (and
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the annulus as the flow moves away from the entrance. Such a development
continues until U reaches its invariant fully-developed axial-velocity profile
(Ufd), since the channel is high enough in these two presented cases. Also, it has
been found that the developing temperature profiles(unpresented in the paper)
reach their fully-developed distribution θfd. This provided a check on the
adequacy of the present computer code.

For given N and E, the channel height required to naturally induce a specific
flow rate is one of the important engineering parameters. For a given F, this
height can be determined by monitoring the value of the pressure as the flow
moves away from the entrance of the channel till the dimensionless pressure
becomes zero. Examples of the axial variation of the dimensionless pressure in
an annulus of E = 0.1 are presented in Figure 3. This figure shows that, for a
given Uo (i.e. a given F), the inlet negative pressure (Po = –U2

o/2) decreases due
to friction as the flow moves up in the annulus until a minimum value is
attained. It then increases due to buoyancy until the dimensionless pressure
becomes zero at the channel exit. Thus, the negative pressure gradient
increases until it reaches a zero value at the axial location where the buoyancy
force becomes equal to the friction force then it becomes a positive pressure
gradient due to the increase in the buoyancy force resulting from the heating

Figure 3.
Development of the
pressure with Z for

different values of the
induced volumetric flow

rate (i.e. different
channel heights), 
N = 0.5, E = 0.7, 

case (I)
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effect. The point at which the dimensionless pressure becomes zero determines
the channel height and the figures show that the channel height increases as the
required induced flow rate increases (i.e. as Uo increases). However, for the
present cases with one isothermal boundary there is an upper limit for Uo
(= Uo,fd ) beyond which there will be no more increase in the induced flow rate
regardless of the channel height. 

The variation of the induced flow rate with the channel height is shown in
Figures 4(a) and 4(b) for cases (I) and (O) respectively. In these two figures,
results are presented for three values of E ( 0.1, 0.5 and 0.7). It is clear from these
figures that, for given N and E, the required channel height to suck up a specific
dimensionless flow rate is larger for case (I) than for case (O). This is attributed
to the larger heating surface in case (O) than in case (I). Another observation
from Figures 4(a) and 4(b) is that increasing the eccentricity E causes an
increase in F in both cases (I) and (O). This qualitatively agrees with the trend
of the reported forced-flow results in the literature which indicate that
increasing E reduces the resistance to flow. 

For cases (I) and (O) respectively, Figures 5(a) and 5(b) give the variation of
the heat gained by the fluid from entrance up to the annulus exit (

–
Q) with the

Figure 4(a).
The induced volumetric
flow rate versus channel
height, for various
values of E, N = 0.5,
case (I)
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channel height L for the three dimensionless eccentricities investigated. These
figures show that, for a given annulus (i.e. given N, L and E ), the higher the
value of the eccentricity the larger the total heat absorbed by the fluid. This is
attributed to the increase in the flow rate with eccentricity as was clarified in
Figures 4(a) and 4(b).

The variation of the dimensionless mixing-cup (mixed-mean) temperature
θm with Z, for various values of Uo (i.e. various values of F or, implicitly, L) and
both boundary conditions considered, is shown in Figures 6(a) through 6(c) for
the three considered values of eccentricity, namely, E = 0.1, 0.5 and 0.7
respectively. In each of these figures, curves corresponding to three values (low,
intermediate and high) of Uo are drawn for each boundary condition. Note that
for small values of Uo (i.e. F), the curves are shown up to the axial distance at
which the pressure defect reached a zero value (i.e. the exit cross-section). It is
clear from these figures that θm for thermal boundary condition (O) is greater
than that for thermal boundary condition (I) at same Z and F in a given annulus.
Again this is due to the larger heating surface in case (O) than that in case (I).
On the other hand, with large values of Uo (i.e. near enough to Uo,fd ) the value of
θm for either boundary condition attains its fully developed value (which is

Figure 4(b).
The induced volumetric

flow rate versus channel
height, for various

values of E, N = 0.5,
case (O)
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Figure 5(a).
The total heat absorbed
by the fluid against the
channel height for
various eccentricities, N
= 0.5, case (I)
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Figure 5(b).
The total heat absorbed
by the fluid against the
channel height for
various eccentricities, N
= 0.5, case (O)
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Figure 6(a).
Variation of θm with Z

for various values of Uo,
N = 0.5, E = 0.1
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Figure 6(b).
Variation of θm with Z

for various values of Uo,
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invariant with Z ) before the fluid reaches the annulus top exit. In other words,
the flow reaches the state of thermal full development before it becomes
hydrodynamically fully developed. This is a feature of natural convection flows
in channels, regardless of the value of Pr, as was explained by El-Shaarawi and
Al-Nimr[12]. When thermal full development is reached, the θ-profile does not
vary with further increase in Z. In the present case, under these fully-developed
conditions, the heat passes from the heated wall to the opposite cooled wall
(which is maintained at To) by pure conduction through laminar layers, i.e. as if
the fluid were stationary.

Conclusions
A parabolic-flow model in bipolar coordinates has been presented for the
developing laminar free convection in open-ended vertical eccentric annuli. A
linearized finite-difference algorithm has been developed to numerically solve
this model. Numerical results are presented for a fluid of Pr = 0.7 in an annulus
of radius ratio 0.5. Three values of dimensionless eccentricity and two thermal
boundary conditions have been investigated. These thermal boundary
conditions are obtained by having one of the annulus walls uniformly heated
while the opposite wall is isothermally cooled and maintained at the inlet-fluid
(ambient) temperature.

The results show that both the induced flow rate and the total heat absorbed
by the fluid increase with eccentricity. The variations of the induced flow rate
and the total heat absorbed by the fluid with the channel height have been

Figure 6(c).
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presented for use in practical applications. Finally, the obtained results also
show that heating the outer boundary of the annulus is more useful for inducing
flow (thermosyphons) than heating its inner boundary.
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